reader comments
5 with
In August and September, threat actors unleashed the biggest distributed denial-of-service attacks in Internet history by exploiting a previously unknown vulnerability in a key technical protocol. Unlike other high-severity zerodays in recent years—Heartbleed or log4j, for example—which caused chaos from a torrent of indiscriminate exploits, the more recent attacks, dubbed HTTP/2 Rapid Reset, were barely noticeable to all but a select few engineers.
HTTP2/Rapid Reset is a novel technique for waging DDoS, or distributed denial-of-service attacks, of an unprecedented magnitude. It wasn’t discovered until after it was already being exploited to deliver record-breaking DDoSes. One attack on a customer using the Cloudflare content delivery network peaked at 201 million requests per second, almost triple the previous record Cloudflare had seen of 71 million rps. An attack on a site using Google’s cloud infrastructure topped out at 398 million rps, more than 7.5 times bigger than the previous record Google recorded of 46 million rps.
Doing more with less
The DDoSes hitting Cloudflare came from a network of roughly 20,000 malicious machines, a relatively small number compared with many so-called botnets. The attack was all the more impressive because, unlike many DDoSes directed at Cloudflare customers, this one resulted in intermittent 4xx and 5xx errors when legitimate users attempted to connect to some websites.
“Cloudflare regularly detects botnets that are orders of magnitude larger than this—comprising hundreds of thousands and even millions of machines,” Cloudflare Chief Security Officer Grant Bourzikas wrote. “For a relatively small botnet to output such a large volume of requests, with the potential to incapacitate nearly any server or application supporting HTTP/2, underscores how menacing this vulnerability is for unprotected networks.”
3.47 terabytes per second.
Network protocol DDoSes work to overwhelm routers and other devices found in layers 3 and 4 of the network stack. Because they work on these network layers they’re measured in packets per second. One of the largest protocol attacks was one blocked by security firm Imperva that peaked at 500 million packets per second.
The type of attack carried out by HTTP/2 Rapid Reset falls into a third form of DDoS known as Application Layer attacks. Rather than trying to overwhelm the incoming connection (volumetric) or exhaust the routing infrastructure (network protocol), application-level DDOSes attempt to exhaust the computing resources available in layer 7 of a target’s infrastructure. Floods to server applications for HTTP, HTTPS, and SIP voice are among the most common means for exhausting a target’s computing resources.